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1. INTRODUCTION

Let V be a nonempty subset of the normed linear space X. For any x E X,
the (possibly empty) set of best approximations, or nearest points, to x
from V is defined by

Pv(x) = {v E V III x - v II = d(x, V)},

where d(x, V) = inf{11 x - v III v E V}. The (set-valued) mapping Pv : X -+ 2Y

is called the metric projection onto V.
Clearly, the set Py(x) depends on the point x, the set V, the norm II . II,

and the linear space X. It is natural to ask if Pv(x) varies "continuously"
relative to x, V, II . II, and X.

The question of the dependence of Pv(x) on x is essentially the problem of
the continuity ofthe metric projection P v . This problem has been considered
by many authors. Partial surveys may be found, for example, in Vlasov
[17] and Singer [15].

The question as to how Pv(x) depends on the norm II . II has been co!).sidered
rarely (see, e.g., Kripke (6) and Rice [13; the P6lya algorithm, p. 8]).

The question of the dependence of Pv(x) on the linear space X has only
been considered in some special cases (see, e.g., Kirchberger [5], Maehly
and Witzgall [7], Nitsche [9], and Chui et al. [2]).

However, the problem of the dependence of Pv(x) on V (for a fixed x)
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does not seem to have been considered up to now. This question seems impor­
tant since, for example, when approximating with spline functions, it is of
interest to know how the set of best approximations to a given function
depends on the knots which define the splines. In practice, the knots cannot
be specified exactly, but only up to some error. It is reasonable to ask if the
best approximations change "continuously" as the error tends to zero.

Another reason for wanting to study the behavior of Pv(x) as V varies
is that many important nonlinear approximating subsets V (e.g., the rational
functions, exponential sums, or the spline functions with free knots) can be
expressed as the union of linear subspaces:

for some A C lRn , where each Va is a (linear) subspace. For example, the
rational functions in e[O, I] can be written as

where

and

A '= la = (ao , al ,... , an) E lRn+l '~aiti > °for aU t E [0, 1](.
This suggests the following procedure for finding best approximations to a
given function x from V. Fix a parameter a E A and determine a best approxi­
mation to x from the subspace Va' Then choose a new parameter it E A
so that the above linear approximation problem yields a "better" approxi­
mation to x from Vii' The question is now whether such an algorithm exists
which gives a sequence of elements converging to a best approximation to
x from V. A natural first step is to determine if best approximations to x
from Va vary "continuously" relative to the parameter a.

In this paper we consider the following general situation. Let A be a
topological space (set of "parameters"), X a normed linear space, x E X,
and for each a E A, let Va be a nonempty subset of X. The parameter mapping
is the (generally set-valued) mapping a 1---+ P y (x) from A into the coUection
of bounded subsets of X. We will be interest;d in how P y (x) varies with a.

In Section 2, we include some results of a general nature"concerning semi­
continuity properties of the parameter mapping in the case that each Va
is a finite-dimensional fiat. The main result here is Theorem 2.5 which gives
a sufficient condition under which the parameter mapping is upper semi­
continuous. On the other hand we give an· example which shows that even
in a two-dimensional polyhedral space, where the range {Va I a E A} consists
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of all one"dimensional subspaces, the parameter mapping is neither lower
semicontinuous nor admits a continuous selection (Example 2.7). This is in
striking contrast to the behavior of the metric projection itself which, in this
situation, is always lower semicontinuous and admits a continuous (even
linear 1) selection. In this connection, we should mention that the metric
projection can be regarded, in a certain sense, as a special parameter mapping
because of the formula Pv(x) = x + pv_{x}(O) for each x E X. From this it
follows that any semicontinuity properties of the parameter mapping
x f--+ Pv_",(O) are valid for the metric projection x f--+ Pv(x), and vice versa.

In Section 3, we consider parametric approximation by weak Chebyshev
subspaces of C[a, b]. In contrast to Example 2.7, we show that the parameter
mapping for a certain class of weak Chebyshev subspaces does admit a
continuous selection (Theorem 3.3). Furthermore, we prove that the natural
parameter mapping for spline subspaces is always upper semicontinuous
(proposition 3.6), but in general not lower semicontinuous(Proposition 3.8);
however, it does admit a continuous selection for a special class of spline
subspaces (Theorem 3.9).

2. SOME GENERAL RESULTS·

If (X, d) is a metric space, the Hausdorff metric h on the collection of all
nonempty closed and bounded subsets gB(X) of X is defined by

h(A, B) = max {sup dCa, B), sup deb, A)},
aEA bEB

where d(x, Y) = inf{d(x, y) lyE Y}.

2.1 LEMMA. Let A and B be nonempty closed and bounded subsets of
a metric space (X, d) and let x EX Then

I d(x, A) - d(x, B)[ ~ h(A, B).

In particular, ifgB(X) is topologized by the Hausdorff metric, the map d(x, -):
gB(X) -1> IR is Lipschitz continuous.

Proof Given E > 0, choose a E A and b E B so that d(x, a) <
d(x, A) + E/2 and dCa, b) < dCa, B) + E/2. Then

d(x, B) ~ d(x, b) ~ d(x, a) + dCa, b)

< d(x, A) + dCa, B) + E

~ d(x, A) + h(A, B) + E.
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Since E was arbitrary,

d(x, B) - d(x, A) ~ h(A, B).

Interchanging the roles of A and B, we obtain the result. I

2.2 DEFINITION' (See, e.g., Hahn [3J). Let A be a topological space,
X a metric space, and 88(X) the collection ofall nonempty closed and bounded
subsets of X. Let aoE A. A (set-valued) mapping F: A -+ 88(X) is called:

(1) lower semicontinuous (l.s.c) at ao if for each open set we X with
F(ao) () W =F 0, there is a neighborhood U of ao (in A) such that F(a) n
W =F 0 for all a E U;

(2) upper semicontinuous (u.s.c) at ao if each open set we X with
F(ao) e W, there is a neighborhood U of ao (in A) such that F(ao) e W for
each a E U;

(3) Hausdorff continuous at ao if for each E > 0, thereis a neighborhood
U of ao (in A) such that h(F(ao), F(a)) < E for each a E A.

F is called lower semicontinuous (l.s.c), upper semicontinuous (u.s.c),
or Hausdorff continuous, if F is (respectively) l.s.c., u.s.c., or Hausdorff
continuous at each point of X.

Note that if F is "singleton-valued" (i.e., F(a) is a point for each a E A),
each of these three conditions reduces to the usual definition of continuity
of the mapping a f-+ F(a).

A continuous selection for F is a continuous mapping s: A -+ X such that
sea) E F(a) for each a E A.

2.3 LEMMA. Let A be a topological space, X a metric space x E X, and
for each a E A, let Ka be a nonempty compact subset of X. If the mapping
a f-+ Ka (from A into 88(X)) is Hausdorff continuous at ao , then the paratneter
mapping a f-+ PKa(x) (from A into 88(X))is upper semicontinuous at ao .

Proof If not, there is an open set we X with PKao(x) e W, and a net
(a6) in A with a6 -+ ao such that PKa/x)\ W oF 0 for each o. Choose

for each o. (*)

Since the map a f-+ Ka is Hausdorff continuous, h(Kaa , Ka) -+ O. But this
implies that SUPkEKa. d(k, Ka ) ---+ O. Hence d( Y6 , Ka ) ---+ O. By compactness,

u 0 0

we can choose k aoE K a so that d( Y6 , k 60) = d( Y6 , K a ). Again by compact-
o 0

ness, there exist a subnet (kyO) of (k60) and kO E Ka such that d(kyO, kO) -+ O.o
Thus
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Using Lemma 2.1, we deduce that

d(x, kO) = lim d(x, yO') = lim d(x, Ka) = d(x, Kao)

265

so kO E PKa (x) C W. Hence yO' E Weventually, which contradicts (*). I
o

A flat in a linear space X is any set of the form V = M + x, where M
is a linear subspace and x E X. That is, a flat is a translation of a linear
subspace. An n-dimensional flat is the translation of an n-dimensional
subspace.

As an application of Lemma 2.3 to normed linear spaces, we prove

2.4 PROPOSITION. Let X bea normed linear space, x E X, A a topological
space, and for each a E A, let Va be a finite-dimensional fiat in X and let Ca

be any constant such that d(x, Va) + 1\ x II ~ Ca' (E.g., if Va is actually a
subspace, then any constant Ca ~ 2 II x II works.) Let

If the mapping a f-* Va is Hausdorff continuous on A, then the parameter
mapping a f-* pv.(x) is upper semicontinuous on A.

Proof Since Va is a closed and bounded subset of a finite-dimensional
flat, Va is compact and Lemma 2.3 implies that the map a f-* Pv (x) is U.S.c.
But if V E P v (x), then a

•

il V II ~ II V - x II + II x II = d(x, Va) + II x \I ~ Ca .

That is, V E Va . Hence Pv (x) = Pv (x) and the result follows. I
a a

It may not always be easy to ascertain whether or not the mapping a 1-+ Va
of Proposition 2.4 is Hausdorff continuous; however, the following theorem
provides a useful alternate condition that is often easy to verify in the appli­
cations.

2.5 THEOREM. Let X be a normed linear space, A a topological space,
N a fixed positive integer, and for each a E A, let Va be an N-dimensional
subspace of X. If Va has a basis {x1

a , x 2
a, ••• , x N

a} which is continuous in a
(i.e., as -+ a implies \I x~s - Xia II -+ 0 for i = 1, 2,... , N), then for each
x E X the mapping a f-* Va is Hausdorff continuous on A (where Va is defined
as in Proposition 2.4 with Ca = 2 II x 10. In particular, the parameter mapping
a f-* Pva(x) is upper semicontinuous on A.

Proof The key to our proof is the

LEMMA. Under the hypothesis of the theorem, let aa -+ ao and Va E Vaa =
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{v E Vaa III v II ~ 211 x II}. Then there exists a subnet of (va) which converges
to an element of Vao ' .

.Proofoflemma. Let Va = L:;:l exlxfa. We first show that for i = 1,2,..., N,
the net (exl) is eventually bounded. If not, then by passing to a subnet
and reindexing if necessary, we may assume

(i = 1,2,... , N)

and 0 < I exla I ---+ 00. Since I exl/exla I ~ 1, by passing to a further subnet,
we may assume that ex//exla ---+ fJi E IR (i = 1, 2, ... ,N). Then

Thus x~o + L:~ fJixfo = 0, which contradicts the linear inedependence of
{x~o,x~o,..., x';J}. Thus (ex/) is eventually bounded for each i E {1, 2, ... , N}.
Hence there is a subnet so that

(i = 1,2,... , N).

Thus
N N

" -" ~Yxa" ---+" ·xao = V E V""1 - L.; 1.Ao~ 'Y ' .l..J ext i - 0 ,ao .
1 1

Since II v" II ~ 211 x II for all y, /I VO II ~ 2 II x II· That is, Vo E Va . This proves
• 0

the lemma.
To prove the theorem, let aa ---+ ao • We first show that h(Va , Va) ---+ O.o a

That is, we must show

(a) sup d(v, Vao) ---+ 0
VEVa{j

and

(b) sup d(v, Vaa) ---+ O.
VEVao

If (a) were false, one could choose a subnet (alJ), VIJ E VafJ , and € > 0
so that d(vlJ, Va) ?: € for each fJ~ By the lemma, .there is a subnet (v,,) of_ 0

(VIJ) and Vo E Va so that v" ---+ Vo . Thus
o

which is absurd.
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If (b) were false, one could choose a subnet (as) of (ao), vso Etla., and
E > 0 so that

for each fl. (**)

By compactness of tla ,and passing to a subnet if necessary, we may assume
o

that

By the equivalence of norms in the finite-dimensional space Va , it follows
that rxl->- O/.i (i = 1,2,... , N). Define Vs = L~ O/.lx~13 and set 0

Sincevs E Va13 ' it follows that Vs E tla13 . Also, since

N

~ L I O/.llil x~o - x~o II + !I vso- VO II ->- 0,
I

it follows that II VS - VO II ->- 0. Hence

which contradicts (**). This proves that h(tlao' tlao) ->- 0. That is, a 1-+ V­
is Hausdorff continuous on A. The last statement now follows from Propo­
sition 2.4. I

We give now a few representative applications of Theorem 2.5.

2.6. SOME ApPLICATION

(1) Best Approximation Using a Weight Function

Let X = C[O, 1], x E X, {VI' V2 , ... , Vn} a linearly independent subset
of X, V = Span{VI , V2 , ... , vn}, and let A be a topological space. Let
w: A -)- qo, 1] be a continuous function such that (w(a))(t) =I=- 0 for each
t E [0, I]. It is easy to see that the vectors

(i = 1, 2,... , n)
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are linearly independent in X (for each a E A) so Va = span{xl
a, X2a,..., X na}

is n dimensional for each a E A. Further, the functions a 1-+ Xi a (i = 1, 2,... , n)
are continuous on A. Hence by Theorem 2.5 the parameter mapping
a 1-+ pvJx) is upper semicontinuous.

(2) Best Approximation by Generalized Rational Functions

Let T be a compact Hausdorff space, X = C(T), and let {UI' U2 , ... , um}

and {VI' V2 , ... , vn} be two linearly independent subsets of X. Let

and, for each a = (aI' a2 , ... , an) E A, define

Then Va is an m-dimensional subspace of C(T) having the basis vectors

(i = 1,2,... , m).

Further, the mappings

(i = 1,2,... , n)

are continuous on A. Thus, by Theorem 2.5, the parameter mapping

a 1-+ pv.(x)

is upper semicontinuous on A (for each x E C(T)).

(3) Best Approximation by Exponential Sums

Let X = C[O, I] and for each

define

Va = l~ IT-iea;t I(IT-I , IT-2 , ... , IT-n ) E IR+
Then Va is an n-dimensional subspace of C[O, 1] and the mappings

(i = 1,2,... , n)
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are continuous on A. By Theorem 2.5, for each x E C[O, 1], the parameter
mapping a f-+ Pv (x) is upper semicontinuous on A.

It is known that in normed linear space with the Property (P) of Brown [1 J,
the metric projection onto any finite-dimensional subspace is lower semi­
continuous, and hence (by the Michael selection theorem [8]) has a continuous
selection. Therefore it is natural to conjecture that, with the hypothesis of
Theorem 2.5 and the additional assumption that X has property (P), the para­
meter map a f-+ Pv (x) is lower semicontinuous. The following simple
counterexample is then perhaps surprising. In fact, the parameter map of
this example does not even have a continuous selection.

2.7 COUNTEREXAMPLE. Let X denote the plane with the maximum norm:
x = (x(l), x(2)) E 1R2, II x II = max{1 x(1), Ix(2)1}. Then X is a polyhedral
space so it has property (P) [lJ. Let A denote the interval [-1, 1] (with
the usual topology), and for each a E A, let Xla = (1, a) E X and

Thus each Va is a one-dimensional subspace of X and the map a f-+ x1
a is

continuous on A. By Theorem 2.5, for each x E X, the parameter mapping
a f-+ Pv (x) is upper semicontinuous on A.

Now "let x = (0, 1) E X. It is readily verified that for each a E A\{O},

Thus P v (x) -+ x1
0 as a'" °and P v (x) - -XI

O as a;'1 0. But
a a

It follows that the parameter map a f-+ Pv (x) is not lower semicontinuous
at a = O. Also, it is obvious that there ca~ exist no selection for the para­
meter map which is continuous at a = O.

This example suggests that to prove the existence of continuous selections
for the parameter map a f-+ Pv,,,(x), one must resort to alternate, more direct,
methods rather than appealing to Micheal's selection theorem (which requires
lower semicontinuity of the mapping in question). Indeed, in the next section
we exhibit an example in which the parameter mapping is not lower semi­
continuous and yet it does have a continuous selection.
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3. PARAMETRIC APPROXIMATION BY WEAK CHEBYSHEV SUBSPACES OF C[rx,13].

In this section we will be considering certain subspaces of the Banach
space C[rx, 13], the real-valued continuous functions on the compact interval
[rx,13] in IR, and endowed with the supremum norm. We first show that the
parameter mapping for a certain class of weak Chebyshev subspaces in
C[rx, 13] admits a continuous selection.

3.1 DEFINITIONS. (1) An n-dimensional subspace V of C[rx, 13] is called
weak Chebyshev if each v EO V has at most n - 1 sign changes, i.e., there do
not exist n + 1points rx ~ to < t1 < .. , < tn ~ 13 such that V(ti) v(ti+1) < °
(i = 0, 1,... , n).

(2) Let V be an n-dimensional subspace of C[rx,13] and x E C[rx, 13].
An element v E Pv(x) is called an alternation element of x if there exist
n + 1 points rx ~ to < t1 < '" < tn ~ 13 such that

a(-l)i(x - V)(ti) = II x - v II (i = 0, 1, ... , n)

for some a E {-1, I}. The points to, t1 , ... , tn are called alternating extreme
points of x-v.

The following known result, connecting these concepts, will be useful
to us.

3.2 THEOREM. (1) (Jones and Karlovitz [4]) An n-dimensional subspace
V of C[rx, 13] is weak Chebyshev ifand only iffor each x E C[(x, 13], there exists
at least one alternating element in Pv(x).

(2) (Niirnberger and Sommer [10]) Let V be an n-dimensional weak
Chebyshev subspace of C[(X, 13], Then the following conditions are equivalent:

(i) Each nonzero v E V has at most n distinct zeros;

(ii) For each x E C[rx, 13], there exists exactly one alternating element
in Pv(x).

3.3 THEOREM. Let A be a topological space and for each a E A let Va be
an n-dimensional weak Chebyshev subspace of C[rx, 13] such that each nonzero
v E Va has at most n distinct zeros. Let x E C[rx, 13] and

Va = {v E Va III V II ~ 211 x II}.

If the mapping a ~ Va is Hausdorff continuous on A, then there exists a
continuous selectionfor the parameter mapping a ~ Pva(x).

Proof By Theorem 3.2 (2), for each a E A, there exists exactly one alter-
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nating element Va E Pv (x). We define a selection s for the parameter mapping
by setting a

sea) = Va (a E A).

If s were not continuous at soine ao E A, there is a net (as) in A with a/j -?- ao
such that (s(as)) is bounded away from s(ao)' Since Va is compact, the same
proof as given in Lemma 2.3 shows that the net (s(as)) has a subnet (which
we may assume to be the net itself) converging to a point Vo E PVao(x) =
P Va (x). In particular, Vo =Fe s(ao)' Let lX ~ toS < tIS < ... < tn/j ~ f3 beo
n + 1 alternating extreme points for x - s(a/j). Then

(i = 0, 1,... , n)

for some a/j E {-1, 1}. By passing to a further subnet if necessary, we may
assume that tl -?- ti (i = 0, 1, ... , n) and all the a/j are the same, say
as = a E {-1, 1} for all o. Taking limits we obtain

a( _l)i(X - VO)(ti) = II x - Vo II (i = 0, 1, ... , n).

Thus Vo is an alternating element for x. By uniqueness of alternating elements,
Vo = s(ao), which is a contradiction. I

Now we give a simple application of Theorem 3.3 (which should be con­
trasted with Example 2.7).

3.4 EXAMPLE. Let A = [-1,1] and for each a E A, define Va =
span{va}CC[-l,l], where vaCt)=la-tl (tE[-l,l]). Then for any
x E C[-1, 1], the hypothesis of Theorem 2.5 is fulfilled so the mapping
a}-+ Va is Hausdorff continuous on A. From Theorem 3.3, it follows that
the parameter mapping a }-+ Pv (x) has a continuous selection.

Next we consider a particula~ parameter mapping which arises naturally
in spline approximation.

3.5 DEFINITION. Let lX = ao < al < ... < ale < ak+1 = f3 be k fixed
knots in [lX, ,8]. The class of polynomial splines of degree n with these k knots
is defined by

Sn,ia) = Sn.k(al , a2 , ••• , ale)
= {v E C[lX, ,8] I v has n - 1 continuous

derivatives in [lX, ,8], V I[a. a. ] is a
t' z+l

polynomial of degree at most n (i = 0, 1,... , k)}.
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Equivalently, Sn,le(al , a2 ,..., ale) is the n + k + I-dimensional subspace of
C[ex, {3] spanned by the basis vectors {I, t, t2,... , tn, (t - aJ~ ,... , (t - ak)~}'

where

(t - ai)~ = (t - ai)n

=0

if t;?; ai

if t < ai'

For the remainder ofthe paper A will denote the parameter set

Fix any x E C[ex, {3] and consider the following parameter mapping on A:

It is natural to ask how the set Ps (al(X) depends on the parameter a,
n.k

i.e., on the knots. We will show that for some x the parameter mapping
a f-+ Ps (alx) is not lower semicontinuous; however, in the case when

n.lc

k < n + 1, for any x there exists a continuous selection for this parameter
mapping.

3.6 PROPOSITION. For afixedfunction x E C[ex, {3], the mapping

a f-+ Sn,k(a) "=' {v E Sn,k(a) III v II < 211 x II}

is Hausdorff continuous on A. In particular, the parameter mapping

is upper semicontinuous on A.

Proof By Theorem 2.5 it suffices to verify that the basis

of Sn,k(a) varies continuously with a E A. And for this, it clearly suffices
to show that the mappings a f-+ (t - ai)~ (i = 1,2,... , k) are continuous on A.
Fix any al , bi E [ex, {3] with al < bi . Then if ex <: t <: aI,

If al < t < bi , then
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for some constant Cl depending only on ex, fJ, and n. If bl :(; t :(; fJ, then

for some constant C2 depending only on ex, fJ, and n. Thus
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for some constant C. Replacing al by a;, this shows that the mapping
a 1-+ (t - a;)~ is continuous on A. I

In the sequel, we will refer to the following results which we state here for
ease of reference.

3.7 THEOREM. (1) (Rice [12J, Schumaker [14]) A function Do EO
Sn,k(a1 , a2 , ••• , an) is a best approximation to x EO C[ex, fJJ if and only if x - Uo
has n + j + 1 alternating extreme points on some subinterval [a; , a;+jJ.

(2) (Rice [12]) Let Vo EO Sn,k(al , a2 , ••• , ak) be a best approximation
to x E C[ex, fJ) such that x - Vo has n + j + 1 alternating extreme points
in [ai' ai+j], but does not have n + 1+ 1 alternating extreme points in any
subinterval [ar , ar+l] of [ai' ai+j]. Then all best approximations to x from
Sn,k(al , a2 , ... , ak) coincide on [a; , ai+j).

(3) (Strauss [16]) Let Vo E Sn,k(al , a2 , ... , alc) be a best approximation
to x EO C[ex, fJ] such that x - Vo has at least j + 1 alternating extreme points
in each interval

(j = 1, 2, ... , k)
and

(j :;;, 1, k > n + 1).

(Note that condition (ii) is vacuously satisfied if k :(; n + 1.) Then Vo

is the unique best approximation of x from Sn,k(al , a2 , ••• , ak)'

3.8 PROPOSITION. There exists a function x EO C[ex, 13] such that the para­
meter mapping

is not lower semicontinuous.

Proof Fix any aO = (al , a2 , ... , ale) EA. We will construct two functions
x E C[ex,;3) and Vo EO Sn,iaO) and a sequence (am) in A converging to aO

having the following properties:

(1) 0, Vo EO PSn.k(aO)(x), Vo # 0;

(2) For each m, Ps .<am)(x) = {O}.
n,7~
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Having such functions, it follows that the parameter mapping a f-+ Ps (a)(X)
...k

is .not lower semicontinuous at aO (because there exists no sequence (vm),

with Vm E Ps (amlx) and Vm -- Vo)•
...k

Let

-1
voCt) = (fJ _ ak)n (t - ak)~ .

Then Vo E Sn.k(aO), vo(t) = 0 for all t E (a, ak], and vo(fJ) = - 1. Letting
N = n + 2 + k, it is easy to construct a function x E C[a, fJ] which has the
following properties:

(i) /I x II = 1;

(ii) x is piecewise linear on the interval [a, ak - l ] and x has (at least)
N alternating extreme points in each interval (a, aJ, (aI' a2)"'" (ak-2 , ak-l);

(iii) x has (at least) N alternating extreme points in (ak-l , !(ak-l + ak»;

(iv)

x(t) = 1

= vo(t) + 1

= -1

if t E [!(ak-l + ak), ak],

if t E [ak, teak + fJ)],

if t = fJ

and x is linear for t E [teak + fJ), fJ].
Then II x /I = 1 = II x - Vo II and, since x and x - Vo both have at least

N ?o n + 2 alternating extreme points in [a, ad, it follows by Theorem 3.7
(1) that 0 and Vo are both in Ps (aO)(x).

...k

For m sufficiently large (viz., m > l/(ak - ak-l» we define ar = ai

(i = 1,2,... , k - 1), akm = ak - 11m, and am = (aIm, a2m,... , akm). Then
am -'>- aOas m -'>- 00. Since x has at least N ?o max{n + 2, k + 1} alternating
extreme points in each interval (a, aIm), (aIm, a2m), ... , (aZ"_1 , akm) and 2
altern'ating extreme points in (akm, fJ], it follows by (1) and (3) of Theorem 3.7
that Ps (amJCx) = {O} for each m. This completes the proof. I

n.lc

Despite this negative result, we can prove that the parameter map has a
continuous selection when k :;::;;; n + 1. In the proof of this result among
others we use a selection method of Niirnberger and Sommer [10]. To shorten
the proof, we refer several times to statements, which can be found in the
proof of the Chracterization Theorem 3.1 in [10].

3.9 THEOREM. If k :;::;;; n + 1, then for each x E C[a, {1] there exists a
continuous selection/or the parameter mapping a -- Ps (alx).

. n.k

Proof. Fix x E C[a, /3[.

1. Construction of the selection:
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Let a = (al ,... , ak) E A and Vo E Ps (a)(x). By Theorem 3.7 (1) and (2),
n,k

there exists an interval [a~, a~+l] C [ex, ,8], on which all v E Ps (a)(x) coincide.
n,k

(a) We first approximate x - Vo in [al+1',8] by G~+1 = span
{(t - a~H)~ ,..., (t - a,,)~}, Since Gl+l is a (k - I)-dimensional weak
Chebyshev subspace, by Theorem 3.2 (1), there exists an alternation element
VI E PG (x - vo)· Then Vo+ VI E Ps (a)(X).

l+l n~k

(b) By [10] any two alternation elements VI , V2 E PG (x - vo) coincide
1+1

on [al+l , a~+2]'

(c) Furthermore from [10] it follows, that if Vo E Ps (a)(x) and VI is
",k

an alternation element in PGl+1(x - vo) by approximation in [al+1 ',8]
then Vo + VI = Vo + VI in [alH , aI+2]'

(d) We continue this method in the following way: We approximate
x - Vo - VI in [al+2 ',8] by Gl+2 = span{(t - al+J+ ,... , (t - ak)+}' By
Theorem 3,2 (1), there exists an alternation element V2 E PG (x - Vo - VI)'

1+2

As in (lb) all these alternation elements coincide in [aI+2 ' az+3] and as in
(Ie) we have that Vo+ VI + V2 E Ps",k(a)(x) is independent of the choice of
Vo and Vo + VI in [al+2 , al+3J. We continue this method up to the last interval
[ale, ,8] and obtain a function V = Vo+ VI + ... + Vk+! .

(e) Using the same kind of arguments as in (Ie) and (d) we get a
function v = V_~ + V_l+! + ... + VoE Ps (a)(x), where for each i the fune-

n,k

tion g-i is an alternation element in Pc .(x - V_;+! - ... - vo) byapproxi-
_ l+l-z

mation with Gi = span{(a1 - t)+ ,... , (a; - r)+} in [ex, aI+1_;], where

(a; - t)~ = (a; - t)n

o
if t ~ ai,

if t > ai .

We define sea) = V_I + ... + V_I + Vo + VI --1- ... + Vk-l and have that
s(a) E Ps (a)(x).

n.lc

(f) By [lOJ sea) is independent of the choice of the interval [az , az+J,
on which all V E Ps (a)(x) coincide.

",k

Therefore a -+ s(a) is a selection for the parameter mapping a -+ PSn,k(a)(x).

(2) We show that s is a continuous selection.

Assume that s is not continuous. Then there exists a point a E A and a
sequence (am) in A such that am -+ a and s(am) does not converge to s(a),
where am = (aim, ... , akm).

(a) We show that (s(am» has a subsequence converging to a function
v E P s (a)(x). For each m we can write s(am) = rxom + rximt + ..,+

n.l~

exnmtn + ,81m(t - aIm): + ... + ,8km(t - akm)~. By the proof of Propo-
sition 3.6 (t - ar): -+ (t - a;)~, i = 1,... , k. Thus (exr), i = 0, 1,... , n,
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and (fJ/,,), i = 1,... , k, are bounded sequences, as been shown in the proof of
Theorem 2.5. Therefore (s(am» has a convergent subsequence, which for
notational convenience we again denote by (s(am», converging to a function
v E Sn,k(a). We show that v E PSn,/al(X). If not, there exists a function
vE Sn,lia) such that II x - v II > II x - vii·

The function v can be written as v = (Xo + (XII + + (Xntn +
fJI(t - al)~ + + fJk(t - ak)~' Then vm = (Xo + (Xlt + + (Xntn +
fJI(t - alm)~ + + fJk(t - ak)~ is in Sn,k(am) and converges to v. Since
seam) ->- v we have for sufficiently large m that II x - s(am)11 > II x - vm II.
This is a contradiction to seam) E Ps (a )(x).

n,lc' m

This shows that we may assume that am ->- a and seam) ->- v, where
v E Ps (al(X), v oF sea).n.k

(b) We set lea) = {t E [(X, fJ]: vICt) = V2(t) for each VI' V2 E Ps (al(X)}.n.k
Passing again to a subsequence of (am), by Theorem 3.7 (a) and (2) we may
assume that there exists an interval [ar , ar+i] such that for each m l(am) =
[arm, a;'+i] and x - am has n + j + 1 alternating extreme points arm ~

zom < Zlm < ... < Z::+i ~ a;'+i' i.e., E(-1)i(X - s(am»(z/,,) = II x - s(am)ll,
i = 0, 1,... , n + j, E = ±1. Since [(X,f3] is compact we may assume that
zr ->- Zi, i = 0, 1, ... , n + j. Then

II x - v II = lim II x - s(am)1I = E(-l)i lim (x - s(am»(z/,,)
m~~ m0 00

= E(-1 )i(X - V)(Zi)'

i = 0, 1,..., n + j. Therefore x - v has n + j + 1 alternating extreme points
in [ar , ar+i]. Thus by Theorem 3.7 (2) there exists an interval [ap , ap+i] C
[ar , aNi] with [ap , ap+i] C let).

(c) According to (2b) there exists an interval [ai' alH] C lea) such
that [at', a~l] C l(am) for each m. Since the selection s is independent of
the choice of such intervals, the function sea) can be defined by starting with
[ai, alH ] and the functions seam) can be defined by starting with [aim, a~l]
for each m. Therefore sea) = V_l + .. ,+ V-I + Vo+ VI + ... + Vk-l and
seam) = V_I + ... + V-I + vom+ VIm + .. ,+ V"!:_l' Since (vi"') is bounded
for each i, by arguments similar to those in (2a) for each i the sequence
(vi"') has a convergent subsequence, which we again denote by (v/n), con­
verging to a function Vi' Then of course we have v = V_I + ... + V-I +
Vo + VI + .. ,+ Vk-l . We show that for each i the functions Vi can be taken
as Vi , where the functions Vi are those which appear in the definition of sea).
This is done by induction. We consider only the case i ? 0, because the case
i < 0 can be proved analogously. For i = °we have vom E Ps (a leX) and

n,k m

vom ->- vo so that Vo E Ps (al(X). Since all v E Ps (al(X) coincide on [ai, al-H]
n,k n.k

and the selection is independent of the choice of any v E Ps (a)(x) we cann.'
take Vo = vO ' Now suppose we can take Vi = Vi for °~ j < i. For each
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In the function vr is an alternation element of x - (vo'" + .. , + v:-1) by
approximation with C'!'+i in [arti' 13]. Using arguments similar to those in
(2a) we get that, since v/" -+ V; ,j = 0, 1,... , i, the function Vi is an alternation
element of x - (vo + '" + Vi-I) by approximation with CHi in lal+i, 13].
We note that, since vr -+ V; , j = 0, 1,... , i, the alternation properties of
x - (vo'" + ... + v:-1) - vr carryover to x - (vo+ ... + Vi-I) - i3; .
From (lb)-(e) it follows that Vo+ ... + Vi = Vo + .,. +- Vi in [al+i , ahi+l]

and thus we can take Vi =Ui' Therefore sea) = v,a contradiction. This
completes the proof. I
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